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Band structures and band gaps of liquid surface waves propagating through an infinite array
of cylinders
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The multiple scattering method is applied to the calculations of band structures of liquid surface waves
propagating through an infinite array of vertical cylinders. The influence of the filling fraction on the formation
of band gaps is discussed. It is found that there exist complete band gaps for both the square and triangular
arrays of cylinders.
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In the last decade there has been considerable interest amties and photonic band structures as W&8,16. For lig-
photonic crystals owing to their interesting physical proper-uid surface waves, the multiple scattering method, which is
ties and potential applications in novel devices as {eH6]. particularly efficient for arrays of axisymmetric bodies, has
As a result of multiple Bragg scatterings, the propagation obeen frequently adopted in the study of many properties of
electromagnetic waves is characterized by photonic bangropagation of liquid surface wavé$7—22. To our knowl-
structures. Between photonic bands, there may exist a ph&dge, however, there are no calculations of the band struc-
tonic band gap, within which wave propagation is absolutelytures of liquid surface waves based on the multiple scattering
forbidden. method.

When propagating in periodic structures, liquid surface In this paper we apply the multiple scattering method to
waves will also be modulated by the introduced periodicity.calculate the band structures of liquid surface waves propa-
Band structures and band gaps can also exist for liquid sugating through an infinite two-dimensional array of vertical
face waves. As a result, many interesting phenomena founcylinders. Consider a periodic array of identical, rigid, circu-
in photonic crystals may also exist in liquid surface waveslar cylinders standing in liquid of constant degthThe lig-

One of the advantages by using liquid surface waves, fronuid is assumed to be inviscid and incompressible and the
the experimental point of view, is that these interesting pheflow to be irrotational. Sex—y in the horizontal plane anzl
nomena can be observed directly by visualizing the patternas the vertical axis. The free surface of the calm liquid is at
of liquid surface waves. For example, Bloch waves and doz=0 and the bottom at=—h. On the basis of inviscid,
main walls have been visualized for liquid surface wavedinear theory of liquid surface wavd3,24), the velocity
propagating over a bottom with periodically drilled holgs  potential® may be sought in the form

Recently, there have been some theoretj@t11] and _
experimental studigsl1] on the band structures and the pos- ®(x,y,z,t)=Rd ¢(x,y)coshk(z+h)e '], (1)
sibility of the existence of band gaps for liquid surface waves
propagating in periodic structures. By using the plane-wavavherew is the angular frequency of a harmonic modeis
expansion method, Chdi®] studied the band structures of given by the solutions of the two-dimensional Helmholtz
surface water waves along periodic interfaces. In two-equation
dimensional periodic geometries, no complete band gaps
were found. Torret al. [11] investigated theoretically and (V2+ k%) ¢p=0, 2
experimentally the band structures of liquid surface waves
over a bottom with periodically drilled two-dimensional Which is subjected to the boundary condition of no flow
holes. In their band structure calculations, the plane-wavérough the cylinder walls, namely,
expansion method was used. But no complete band gaps
were observed. By using a variational method, McI\ED] ﬁ_
studied water wave propagation through an array of vertical an
cylinders arranged in the square lattice. But only the band
structure along one direction in the Brillouin zone was given.wheren is the direction normal to the cylinder surface. The

In photonic crystals, the plane-wave expansion methodvave numbei can be obtained from the dispersion relation
has been commonly used in the calculations of photoni§23,24
band structuref12—14. But the multiple scattering method
has also been used in the calculations of transmission prop- w?=gk tanhkh, (4)

0, )

where g is the gravitational acceleration. The vertical dis-
*Electronic address: jzi@fudan.edu.cn placement of the liquid surface is related to¢ by [23,24]
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iw B whereh,; andh, are integers which are denoted collectively
n(X,y,t)=Re — E(ﬁ(X-Y)e et (5 by h and the primitive translation vectors of the reciprocal
lattice are given by

Equation (2) can be solved by the multiple scattering 5
method. For the infinite system, however, there is a compu- bl__ﬂ(a(22> —al?), (12)
tational difficulty due to the slow convergence of the lattice ac
sums. Fortunately, this difficulty can be overcome by a new
technique, introduced in photonic crystg®b,26], to accel- b =2—7T(—a(1) —a) (12)
erate the convergence. It should be mentioned that the prob- 27 a, R
lem of liquid surface waves propagating through an array of '
vertical cylinders is very similar to that of electromagnetic Wherea}') is the jth Cartesian component af anda.=|a;
waves withp polarization propagating in an array of per- Xa,| is the area of the primitive unit cell.
fectly conducting cylinders. Therefore, the techniques used Within the framework of the Bloch theorem, the solutions
in electromagnetic wavd®26] can be adopted in the present of Eg. (2) should be Bloch waves. The incident and scatter-
work. The multiple scattering method used to calculate banéhg waves of the cylindej are associated with the center

structures of liquid surface waves is briefly summarized beeylinder (r=0) by a phase factoe'*"i, namely,
low. _
For a finite system, a source must be introduced. But for A m=Ane' 1, (13
band structure calculations it is not necessary to introduce a o
source. Without a source term, the figfdat any point of Bjm=Bme" ', (14

liguid area is composed of the scattering cylindrical waves . .
frC(])m all the cylindeprs gcy where A, and B,,, are for the central cylinder andd is the

Bloch wave vector, which lies in the first Brillouin zoh27].
N M By means of Eqs(6) and(13), following the method devel-
(=2 > BjpHu(k|r—r|)e™>9=7), () oped by Lord Rayleigli28], the following linear equations
j=1 m=-M for B, can be obtained:

whereH is the first Hankel functionm is the index of order, M

andj is the index of cylinders. In the vicinity of the cylinder E Qnm(x,K)Byr=0, (15
j, the field ¢ can be then written as the composition of the m=-M
incident and outgoingscattering waves

where
M
$(0)= 3 A mdn(klr =) +B; oH !
e LA mIm i j,mMm Qnmlx,K)=— D—an,m+sﬁ,m(;<,|<).
n
—_r. imarg(r—rj) - . .
X(k|r=rj])Jem =9, @ The coefficientsS),_,, are lattice sums given by the formula
where the first and the second terms denote the incident ar§85’2@
outgoing waves, respectively, adds the Bessel function of Ak K)= — 8 +iSY (kK 16
the first kind. The ratio of the incident to the scattering co- S (K) Lot 1S (K. (16)
efficients can be determined from E@), as If 1=0,
B; Jin(kR) 1
D = jm_ _*m , 8 Y _ -
" A HLKR) ® (1K) m(0)= [Ym<x)+w
whereR is the radius of cylinders, and the ordearof cylin- " (m—n)! [2\m2n+2
drical waves. (n——l)l(;> d0
The geometry description of an infinite arréyr lattice n=1 ’
of cylinders adopted is that useq in soliq state phym: 4 K V™I m(1QnD) 1 argon)
Let a; and a, be the two noncollinear primitive translation —I KE Q. ToZ=#2 e h,
vectors of the lattice. The intersections of cylinders form a h h h
two-dimensional Bravais lattice whose sites are given by a7
rn=lha+la,, (99 andifl<o,
wherel, andl, are any two integers which are denoted col- S'(x,K)=[SY(x,K)T*, (18
lectively byl. It is convenient to introduce so-called recipro-
cal lattice vectors whereY is the Bessel function of the second kind a@Qd
=K+Gy,. To ensure Eq(15) has nontrivial solutions, the
Gp=h4b;+hsb,, (100  determinant of the matriQ(«,K) must be zero
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FIG. 1. Wave numbek versus wave vectors in the Brillouin s 2
. . . . B
zone along three highly symmetrical directions for the square. The ’ \
filling fraction is 0.196. Solid lines denote the results of Mclver .
| @ @
[10] and dots denote our calculated results. The geometry of cylin- 1 .:. >
ders (top view) and the irreducible Brillouin zone are shown as FA;
insets. 01- X J r
detQ(«,K)|=0. (19 FIG. 2. Wave numbek versus wave vectors in the Brillouin

zone along three highly symmetrical directions for the square

. . and triangular(b) lattices. The filling fraction is 0.5 for both cases.
Band structures can be then obtained by solving the abov.?he geometry of cylindergop view) and the irreducible Brillouin

equation. In numerical calculations the ordeof cylindrical " o shown as insets.

waves must be truncated. To ensure the satisfactory conver-

gence of the eigenproblemm is truncated by the condition 1o show the influence of the filling fraction on the forma-

|D|>10"" o tion of band gaps, the gap map as a function of the filling
We consider two lattices in the present work: the squarggaction is shown in Fig. 3 for the square and triangular lat-

and triangular lattices. For the square lattiag=a(1,0) and  tjces. For the square lattices, there are two band gap regions.

a,=a(0,1), wherea is the so-called lattice constant. For the The first band gap occurs when the filling fraction is larger

triangular latticea; = a(1,0) anda,=a(1/2,1/273). Figure 1 than 0.3. The band gap increases with the filling fraction, up

shows our calculated relation between the wave numkers tg the filling fraction of 0.785, corresponding to the case that

and the Bloch wave vectors, together with that obtained fromy)| cylinders touch each other. The second band gap occurs
a variational method10]. Cylinders are arranged in the

square lattice and the filling fraction, defined as the ratio of 3
the area occupied by the cylinders in a primitive unit cell to
that of the primitive unit cell, is 0.196. Obviously, our results
based on the multiple scattering method are in good agree-
ment with those based on the variational method. No com-
plete band gaps exist. It is noted that if specific values of the
lattice constant and the liquid deptth are given, the con-
ventional band structurew( K]) can be derived.

Figure 2 shows the wave numberversus wave vectors
for the square and triangular lattices. For both lattices, the %0 02 04 06
filling fraction is both 0.5. For the square lattice, there is a 4
band gap in between the first and the second bandsx for (®) Q
ranging from 1.005 to 1.287/a. The ratio of the gap width
to the midgap value ok is 25%. For the triangular lattice,
there are two band gaps. The first band gap occurs in be-
tween the second and the third bands, while the second one
is in between the sixth and the seventh bands. The band gaps
span for k from 1.902 to 2.04@/a and from 3.432 to
3.782r/a for the first and second band gaps, respectively.
The ratio of the gap width to the midgap value mofs 7% % 02 04 06 0.8
and 9.7% for the first and the second band gap, respectively.
For frequencies within band gaps, propagation of liquid sur-
face waves is forbidden, while for frequencies within bands, FIG. 3. Gap map as a function of the filling fraction for the
propagation is allowed. square(a) and triangular(b) lattices. Gray area denotes band gap.
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for the filling fraction between 0.21 and 0.32. For the trian-the surface wave is much larger than the capillary length. At
gular lattice, there are also two band gaps. The first band gagery high frequencies or for cylinders very close to each
exists when the filling fraction is in the range between 0.16other, capillary effects are important. The wetting of cylin-
and 0.4 or larger than 0.43. For the filling fraction larger thanders should be consider¢a9].

0.43, the band gap increases with the filling fraction, up to  |n summary, we calculated the band structures of liquid
the critical value of 0907, Corresponding to the case that aléurface waves propagating through an array Of Vertica' Cy'_
cylinders touch each other. The second band gap opens yders arranged in both the square and triangular lattices by
when the filling fraction is larger than 0.43 and closes Uphe multiple scattering method. It is found that the filling
when the filling fraction reaches 0.73. Clearly, there exiStaction is an important parameter to determine the existence

band gaps for liquid surface waves propagating through ag¢ panq gaps. In both the square and triangular lattices band
array of cylinders in both lattices. In the previous study of

. . r%aps were found.
water waves propagating through a square array of cylinde
[10], no band gaps were found. The reason is that the filling This work was supported mostly by Chinese National Key
fraction is outside of the regions in which there exist bandBasic Research Special Fund. Partial support from the NSF
gaps. and from Shanghai Science and Technology Commission,
In the above discussions, the capillary effects are neChina is acknowledged. We thank Dr. Lieming Li for inter-
glected. This approximation is valid when the wavelength ofesting discussions.
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